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1. Introduction and summary

Rindler horizons provide an intriguing arena in which one can probe aspects of event

horizons using simple accelerated probes in flat space-time. One such aspect concerns

Fulling-Unruh radiation, which makes accelerated probes feel a thermal bath. While the

temperature of this heat bath is relatively low in everyday situations, it has been sug-

gested that large enough accelerations may be achievable in particle accelerators. The idea

proposed in [1 – 4] is to use polarised electrons in a storage ring as thermometers. Their

depolarisation rate can then be used as a measure of the local temperature.

In the present paper we want to analyse, instead, the thermal effects of acceleration

on mesons. In order to describe mesons, we will use generic ideas from holographic models

for gauge theories with matter.1 Large-spin mesons are described in these models by

long, rotating strings [6] which end on flavour branes [7]. They bend into the holographic

direction, forming a U-like shape. The constituent masses of the quark and anti-quark map

to the lengths of the string segments in the holographic direction. In the limit in which

the constituent quark masses vanish, mesons are thus simply massless relativistic strings

rotating at the position of the “infrared wall” or generalisations thereof. This massless

limit is the one we will be considering here.

If we now accelerate this rotating string in one of the three space-like directions, a

Rindler horizon forms. The situation is then reminiscent of the analysis of rotating rela-

tivistic strings in holographic setups at finite temperature. In those setups, it is known that

a horizon at some position in the holographic direction leads to the appearance of a maxi-

mum energy and spin, beyond which holographic mesons melt [8]. By analogy with those

1The idea of exploring the thermal effect of acceleration on hadrons has previously been explored by [5],

with somewhat similar qualitative conclusions, but their methods are non-holographic in nature and rather

different from the ones used in the present paper.
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results, we expect that the acceleration of mesons in the three dimensional space-like direc-

tions, and the related Rindler horizon which is now located entirely in the four-dimensional

world, will also lead to a dissociation effect.2

Our results indeed confirm this expectation. We find that spinning strings have an

upper bound for their acceleration, which is set by the inverse square root of the angular

momentum, amax ∼
√

Ts/J . As spin-off, we also discuss an extension of this setup, in

which the Rindler horizon is used to model aspects of a holographic horizon, obtaining the

velocity-dependence of the dissociation length as in [8, 10, 11].

2. Rotating strings in Rindler space

In order to describe accelerated spinning strings, we will use a Rindler coordinate system.

A particle which experiences a constant acceleration in the x direction satisfies the equation

of motion
d

dt

m dx/dt
√

1 − (dx/dt)2
= F , (2.1)

with a = F/m. Solutions to this equation are given by hyperbolas,

x2 − t2 = a−2 i.e. x =
1

a
cosh (aη) , t =

1

a
sinh (aη) . (2.2)

To describe accelerated motion, it is convenient to introduce Rindler coordinates (η, ξ)

which are adapted to these world-lines, in the sense that fixed-ξ curves map to world-lines

of constant acceleration a = 1/ξ. More precisely, the coordinate transformation is given by

x = ξ cosh(κη) , t = ξ sinh(κη) . (2.3)

The metric then takes the form

ds2 = −ξ2κ2dη2 + dξ2 + dρ2 + ρ2 dφ2 , (2.4)

where we have added an additional two flat dimensions to accommodate the rotating strings

which we intend to study. The coordinate system is once more summarised in figure 1.

Our strings will be described by the following ansatz in terms of the world-sheet coor-

dinates (τ, σ),

η = η(τ) , ξ = ξ(σ) , ρ = ρ(σ) , φ = ωτ . (2.5)

The Nambu-Goto action for our rotating string now reads

S = Ts

∫

dτ

∫ L/2

−L/2

dσ
√

(

ξ2κ2η̇2 − ω2ρ2
)(

ρ′2 + ξ′2
)

. (2.6)

2Static Wilson-line configurations in Rindler space-time have been analysed in [9], but these do not

exhibit all the phenomena which we find for rotating configurations. More importantly, the main difference

of our analysis with respect to [9] is the interpretation of the results. While [9] discusses acceleration in

the fifth, holographic direction and relates acceleration to the dissociation temperature in the dual gauge

theory, the maximal acceleration discussed here is a genuine four-dimensional one.
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We will soon make the gauge choice η = τ which simplifies this action further. The symbol

Ts denotes the string tension of QCD string. In the holographic framework, this tension is

related to the tension of the fundamental string via the warping factor in the metric in the

radial (holographic) direction. Our string will not move freely, following the action (2.6),

as we will also add an external force which acts on the endpoints and accelerates the string.

The effect of the force will be described by imposing appropriate boundary conditions in

the ξ-direction, as we will explain in more detail below.

The ansatz (2.5) describes a string which accelerates in the direction orthogonal to the

rotation plane. It is of course also possible to accelerate the meson in a direction which

is under an arbitrary angle with respect to this plane, or even in the plane of rotation.

Describing such a string configuration is far more involved as the component of angular

momentum orthogonal to the acceleration is not conserved. However, we will argue at

the end of the next section that acceleration in this case also leads to dissociation of the

meson.3

There are two conserved charges which can be used to characterise the string. First,

there is the angular momentum J , associated to the rotation in φ direction, and second

there is the boost charge, associated to the translations in the η-direction. The energy,

(associated with translations in the t-direction) is not a conserved quantity, as the boundary

conditions applied to the string endpoints break this symmetry, and lead to a constant

increase of the string energy. Explicitly, the angular momentum and boost are given by

J = Ts

∫ J/2

−L/2

dσ
ρ2 ω

X(σ)
, (2.7)

B = Ts

∫ J/2

−L/2

dσ
(−κ2ξ2)

(

1 + (ξ′)2
)

X(σ)
, (2.8)

where X(σ) is defined as

X(σ) ≡
√

ξ2κ2 − ρ2ω2

ρ′2 + ξ′2
. (2.9)

3. Accelerated mesons

3.1 Solution for the accelerated meson

The bulk equations of motion (i.e. ignoring the surface terms) for the fields ρ and ξ which

follow from the action (2.6) read

− d

dσ

(

ρ′X(σ)
)

− ρω2

X(σ)
= 0 , (3.1a)

− d

dσ

(

ξ′X(σ)
)

+
ξκ2

X(σ)
= 0 . (3.1b)

It is easy to check that equations of motion for the other fields (η and φ) are automatically

satisfied with the ansatz (2.5).

3Note that such an acceleration cannot be interpreted as gravitational (i.e. in the spirit of [9]).
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Figure 1: The coordinate system used to describe rotating accelerated strings. The direction φ in

which the rotation takes place is suppressed.

At the boundaries of the string there are additional terms which need to be taken into

account. The external force acts only in the ξ-direction, while there are no forces in the

other directions; hence the surface terms for all fields except ξ have to vanish. The surface

terms for the fields ρ, φ and η are all proportional to X(σ), which allows for two possible

boundary conditions,

ξ′|σ=±L/2 = ∞ , (3.2a)

or

ρ|σ=±L/2 =
κ

ω
ξ(±L/2) . (3.2b)

The surface term for the field ξ is

δS

δξ′
δξ

∣

∣

∣

∣

σ=±L/2

= ξ′X(σ)δξ

∣

∣

∣

∣

σ=±L/2

. (3.3)

We see that if we were to impose the second boundary condition (3.2b), the boundary

term (3.3) for ξ would vanish automatically, which clearly does not describe an accelerated

string with a force applied to its endpoints. Hence, we choose the condition ξ′ = ∞ which

is essentially also the boundary condition imposed on the spinning string solutions of [6].

For this boundary condition, the product of the first two factors in (3.3) does not vanish.

By adding an external force, we impose the Dirichlet boundary condition δξ = 0, which

forces the endpoints to move with constant acceleration ξ−1.
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Figure 2: The shape of the string in the (x, ρ) plane as it evolves in time, in an accelerated frame

where the endpoint positions are fixed. The red (bottom) curve represents the shape at t = 0.

After choosing the gauge ρ = σ, the equation of motion (3.1a) can now be integrated

once to give

X(σ)2 = −ω2ρ2 + C2 , (3.4)

where C is an integration constant. Inserting the definition of X(σ) we obtain the differ-

ential equation

ξ′2 =
ξ2κ2 − C2

C2 − ω2σ2
. (3.5)

This can be integrated to give the solution

ξ(σ) =
C

κ
cosh

[

κ

ω
arcsin

(ωσ

C

)

+ D

]

, (3.6)

where D is the second integration constant which will set to zero from now on (without any

loss of generality, as this just means that we choose the coordinate origin in the σ direction

in a symmetric way, i.e. such that σ = 0 corresponds to the tip of the U-shaped string).

This solution also satisfies (3.1b), and in the limit ω → 0 it reduces to the solution found

in [9].

We now impose the boundary condition, i.e. that ξ′(±L/2) → ±∞, which fixes the

length of the string in terms of the angular frequency and the constant C,

L

2
=

C

ω
. (3.7)

Using this relation to eliminate ω from the solution, we find

ξ(σ) =
C

κ
cosh

[

κL

2C
arcsin

(

2σ

L

)]

. (3.8)
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The total angular momentum for this solution reduces, after elimination of ω, to the simple

form

J =
π

8
TsL

2 , (3.9)

while the boost charge does not seem to have a simple analytic expression.

In terms of the angular momentum, the shape of the string in the (ξ, ρ = σ) plane is

ξ(σ) =
C

κ
cosh

[

κ

C

√

2J

πTs
arcsin

(

√

πTs

2J
σ

)]

. (3.10)

It is more intuitive to describe the shape of the string in the original Minkowski coordinates

(x, ρ)

x(t, ρ) =

√

√

√

√

C2

κ2
cosh2

[

κ

C

√

2J

πTs
arcsin

(

√

πTs

2J
ρ

)]

+ t2 . (3.11)

This shape is plotted in figure 2. We see that the solution depends on Minkowski time t,

whereas it is stationary with respect to Rindler time η. As time increases, we see that

(as expected) all points approach the light-cone x = ±t. We also see that the string

configuration (3.11) does not reduce to a straight, unaccelerated string configuration at

the initial time t = 0, but that the string is already bent at this moment. This is simply a

consequence of the fact that we assume the acceleration to be present at all times; a more

realistic solution would start from a straight string, with an acceleration only for t > 0,

and would exhibit more complicated time dependence, though with qualitatively similar

behaviour.

3.2 Critical acceleration

Let us now study the acceleration of the endpoints and see how it depends on the spin.

The constant C in (3.10) is the acceleration of the midpoint of the string, and related to

the acceleration of the string endpoints. Evaluating (3.10) at ±L/2 we find

a−1 := ξ(±L/2) =
C

κ
cosh

[

κ

C

√

πJ

2Ts

]

, (3.12)

where we have defined the acceleration of the endpoints a. The acceleration is limited from

above by the minimum of the right-hand side of (3.12) as a function of C. For a generic

value of a there are two solutions, one of which is presumably unstable [12]. The maximum

of a is achieved for C/κ ≈ 0.834
√

πJ/2Ts, resulting in4

a ≤ 0.529

√

Ts

J
≡ amax . (3.13)

For this critical value of the acceleration the string world-sheet is still smooth, and all points

move within the light-cone of the string endpoints. However, as we try to increase the

4This particular numerical value also plays a role for the computation of [9] which involves static Wilson

lines instead of rotating strings.
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acceleration beyond amax, the rigid U-shaped string solution ceases to exist. To determine

the precise time evolution of this over-accelerated meson, one would need to consider a

more general, time-dependent ansatz. However, a stability analysis of the critical string

configuration along the lines of [12] makes it likely that this configuration is unstable,

leading to a final point of dissociation given by two disconnected strings stretching all the

way to the horizon, and each carrying a fraction of the angular momentum.

From (3.13) we see that as expected, higher spin mesons are less stable, and dissociate

at a smaller value of the acceleration.

To estimate what is the value of the critical acceleration for realistic mesons, we take

the value of the string tension to be Ts = 0.3 GeV2. In the holographic framework the

description of mesons in terms of large rotating strings is, strictly speaking, only valid

for values of angular momentum which are of the order J ∼
√

λ, where λ is the ’t Hooft

coupling. It would be interesting to extend our analysis to the (more realistic) low spin

meson sector, using a description in terms of probe-brane fluctuations, but we will present

this analysis elsewhere. However, if we naively take the expression (3.13) and evaluate it

for e.g. J = 1, 2 and 10, we find for the critical acceleration the values amax = 0.290, 0.205

and 0.092 GeV respectively. It would be interesting to see if there is an experimental set

up in which the critical acceleration could be observed. In particular, the decelerations of

nucleons in the initial stage of a heavy ion collision is estimated to be of the order of up

to a GeV. Although our computation is done for mesons rather than baryons, one may

hope that a similar effect (with a similar order of magnitude for the critical acceleration)

should hold for baryons as well, and hence may be relevant in describing the dynamics of

the initial state of the collision of heavy ions.

As mentioned before, the analysis in the previous section (the ansatz (2.5)) and the

value of the critical acceleration were derived by assuming that the string accelerates in

a direction orthogonal to the rotation plane. The analysis of the equations of motion

describing acceleration under an arbitrary angle is complicated and we will not attempt

it here. However, in order to gain insight into what is happening in this case, one can

consider a simplified configuration of a stretched string whose endpoints are accelerated in

the direction of their relative separation (with the same value of the acceleration). After a

finite amount of lab time, the “left” endpoint of the string will cross the Rindler horizon of

the “right” endpoint, and hence they will loose causal contact. The lab time of the crossing

is given by

tcross =
1

2

(

1

La2
− L

)

, (3.14)

where L is the separation of the string endpoints in the lab frame. There is, trivially, a

critical value of the acceleration, ac, for which the crossing time is zero. If we assume

that the separation of the string endpoints originates from rotation, and we use (3.9), the

critical acceleration is ac =
√

πTs/8J . While the dependence on the string tension is

dictated by dimensional arguments, it is interesting that this crude analysis still implies a

dependence on the angular momentum as in (3.13). Hence, both longitudinal and transverse

accelerations lead to string melting behaviour.

– 7 –
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We should note that in the computation above we have neglected any effects of

bremsstrahlung, since in the large-Nc limit in which our holographic computations are

valid, the emission of strings is suppressed by the string coupling gs ∼ 1/Nc.

Finally, our computation was done in the simplifying limit of vanishing constituent

quark mass, although holographic models allow for a description of mesons with non-zero

constituent quark masses. It would be interesting to extend our analysis to these more

realistic string configurations, and in particular, investigate whether the inclusion of quark

masses still leads to a universality of the critical acceleration (3.13), independent of the

supergravity background. It would also be interesting to analyse the combined effect of a

Rindler horizon in the four-dimensional space-time and a holographic horizon in the radial

direction. We will leave this for future work.

4. Velocity dependent dissociation length

In this section we shift our point of view from the one presented in the previous sections,

and use Rindler space (in the spirit of [9]) as a simplified gravitational background, which

will allow us to compute the velocity dependence of the dissociation length, as obtained

in full-fledged holographic models in [8, 10, 11]. The direction ξ is now interpreted as

the holographic, fifth direction, and the acceleration in this direction is caused by the

gravitational curvature in the holographic direction, rather than a genuine four-dimensional

acceleration. We generalise the ansatz (2.5) to

η = η(τ) , ξ = ξ(σ) , ρ = ρ(σ) , (4.1)

φ = ωτ , y = vη(τ) . (4.2)

where (t, ρ, φ, y) are directions on our 4-dimensional world, and ξ is the holographic di-

rection. Note that the acceleration (i.e. finite temperature) breaks Lorentz invariance,

which makes the boosted solution inequivalent to the unboosted one. Starting from the

ansatz (4.1), the computation of the previous section is trivially extended to yield the string

profile

ξ(σ) =

√
C2 + v2

κ
cosh

[

κ

C

√

2J

πTs
arcsin

(

√

πTs

2J
σ

)]

, (4.3)

while the relation between the angular momentum J and the length L of the string in the

ρ direction is still given by (3.9).

The endpoints of the string are now forced to sit on the flavour D-brane, which is

located at a fixed position ξ = ξ0. This position is generically a function of the temperature

of the background and of the constituent quark mass. On this flavour brane, the local speed

of light is given by cξ0 = κξ0. The constant C is again related to the position of the midpoint

of the string.

In contrast to the situation in the previous section, where we minimised ξ(L/2) as a

function of C for fixed J , we thus now want to find the value of C which maximises L for

fixed ξ0. An expression for L is obtained by setting ξ(L/2) = ξ0 in the v 6= 0 analogue

– 8 –
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Figure 3: The numerical solution for the dissociation length as a function of velocity, and the

analytic large-v approximation.

of (3.8) and solving for L,

L =
4C

κπ
arccosh

[

κξ0√
C2 + v2

]

. (4.4)

Unfortunately, an analytic solution for the maximum of L for all values of the parameters v

and ξ seems out of reach. However, the regime in which v → κξ0 can be treated analytically.

This regime also corresponds to C → 0, and in this limit the value of C which maximises L

is

C =

√

2

3κξ0

v(κ2ξ2
0 − v2)1/4

√

arccosh
κξ0

v
. (4.5)

Substituting this back into the expression for L and expanding for v → κξ0 leads to

Lmax =
8
√

2

3πκ
(κξ0 − v) =

4
√

2

3π2T
(cξ0 − v) (4.6)

where T is the temperature of the Rindler horizon and cξ0 is the (local) speed of light. This

result indeed fits the full numerical solution for Lmax (see figure 3), although in contrast

to [8, 10, 11] there is no agreement of this analytic result with a numerical solution in the

small-v regime.

Moreover, the form of the expression is different from the one obtained in [8, 10, 11]

and we also see that the result does not exhibit Lorentz invariance. The reason for this

difference is simple: standard holographic backgrounds at finite temperature all tend to

asymptotically flat space, unlike the Rindler background (2.4) which by construction de-

scribes only the near horizon geometry of the non-extremal brane. Asymptotic flatness is a

desired property of holographic backgrounds at finite temperature, since it corresponds to

the restoration of Lorentz invariance at energies which are much higher than the temper-

ature. The metric (2.4) and hence the result for the maximal dissociation length (4.6) by

– 9 –
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construction do not describe this regime, but they do capture the behaviour of the system

at energies which are smaller than or equal to the temperature. In this sense we work in a

regime which is complementary to that of [10].
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